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DEVELOPMENT OF EQUILIBRIUM AIR COMPUTER 
PROGRAMS SUITABLE FOR NUMERICAL COMPUTATION 

USING TIME-DEPENDENT OR SHOCK-CAPTURING METHODS 

John C. Tannehill and Robert A. Mohling 

INTRODUCTION 

This report summarizes the research accomplished under NASA Grant 

NGR 16-002-038 for the period November 15, 1971 through March 15, 1972. 

During this period, computer programs were developed which compute the 

thermodynamic properties of equilibrium air for use in either the "time- 

dependent" or "shock-capturing" computational methods. 

dependent" method, the NASA-ARC RGAS computer program was modified to 

allow internal energy and density to be used as the independent variables. 

In addition, simplified curve fits for p = p(e, p) ,  a = a(e, p), and 

T = T(p,p) were devised to reduce computer time. 

method a simplified curve fit for h = h(p,p) was made. These approximate 

curve fits may be particularly useful when employed on advanced computers 

such as the Burrough's ILLIAC IV or the CDC STAR since they avoid the 

cumbersome table-lookup feature of the RGAS program. 

For the "time- 

For the "shock-capturing" 
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MODIFICATION OF THE NASA RGAS SUBROUTINE 

The NASA Ames Research Center real gas computer program has been 

modified to give the user the option of entering with new independent 

variables, internal energy e and density p. Although the calling sequence 

has been altered in order to transfer e to the modified RGAS subroutine, 

the logic and other features of the original RGAS subroutine have been 

retained. The modified subroutine requires new cubic coefficients for 

e and p entry. 

coefficients on tape for air. 

generating the new coefficients and their use in the modified subroutine, 

a brief discussion of the original RGAS subroutine follows. 

A short program was written to generate and store the 

In order to understand the method of 

Original RGAS Subroutine 

Version I of the original RGAS program for real gas calculations 

is based on the gas properties determined by Bailey' for temperatures 

up to 45,000 OK and densities from lom7 to 10 amagats. These properties 

were used to generate 13 files of information on a tape for use in deter- 

mining the thermodynamic properties (a,h,T, and s) of 13 different gas 

mixtures. Each file on the tape contains the cubic spline fit coefficients 

along with the lowest value of the independent variable F, for each interva 

on the 11 constant density lines (R 

+ 3.0; j = 1, 11) .  

and is defined by 

3 

= loglo p/po = - 7.0, - 6.0, ....., 
j 

F varies between zero and FM (the maximum value of F) 
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where B, D, E, FM, po, and po are known constants for each gas. 
I 

Subroutine RGAS calls subroutine SERCH which uses F to locate the 
1 
I cubic coefficients required for the calculation of the thermodynamic 

properties. For example, if h is to be determined with p and p known, 

then R is first calculated (R = loglo p / p  ) to determine the two adjacent 

R. lines. Once F is found from Eq. (l), the two sets of cubic coefficients 

can be located for each R line. With these coefficients, the values of 

h on the two R lines are calculated from 

0 

1 
J 

j 

j 

2 3 hl = a + b F + clF + dlF 1 1  

2 3 h = a2 + b2F + c2F + d2F 2 

allowing h to be found by linear interpolation: 

h = h  1 +(h 2 - hl)(R - Rj) 
The method is illustrated in Fig. 1. 

I 
0 F 

5c 

Fig. 1. Calculation of enthalpy. 
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I L I I I I  

Generation of Cubic Coefficients fo r  Modified RGAS 

In  order t o  use e and p f o r  the independent var iables ,  i t  w a s  

necessary t o  generate new cubic coe f f i c i en t s  f o r  every e i n t e rva l  such 

t h a t  

( 4 )  3 F =  a + b e + c e 2 + d e  . 

This was accomplished by subdividing each F in t e rva l  of the enthalpy 

curve i n t o  three equal p a r t s  as shown i n  Fig. 2 where Fi = F1 + iAF/3, 

i = 0, 1, 2, 3. 

/ 

I L 

F 
I I I I  

0 FM 

A F ~  

Fig. 2. Subdivision of F i n t e rva l  on enthalpy curve. 
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Equation (1) was then solved f o r  the four values of p. 

n 
i 

Pi = PO(1O) i = 1,2,3,4 (5) 

where 

The i n t e r n a l  energy ei w a s  found using the  de f in i t i on  of enthalpy 

e i = hi - pi/p i = 1,2,3,4 (6 1 

with h 

Each value of F can be wri t ten as 

determined using the o r ig ina l  RGAS subroutine knowing p 
i i and p. 

i = 1,2,3,4 (7) 
2 3 Fi = a + be. + cei + dei 

1 

o r  i n  matrix notation 

- - 
F = g, where F = 

el 

2 e 

3 e 

e4 

2 
1 e 

2 
2 e 

2 
3 e 

2 
e4 

- 
, x =  
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A n  IBM l i b r a r y  subroutine GELG was used t o  solve the system of four 

equations fo r  a ,  b, c ,  and d fo r  each F in t e rva l  and a l l  eleven constant 

density l i nes .  

i n t e rva l s  (e ' s )  were stored on the tape i n  F i l e  14. A l i s t i n g  of the 

program which generates the coe f f i c i en t s  appears i n  Appendix A. 

These coe f f i c i en t s  along with the i n i t i a l  values of the e 

1 

The curve generated f o r  F = F(e, p) i s  shown i n  Fig. 3. The maximum 

values of e allowed f o r  each of the density r a t i o s  are given i n  Table 1 

and plot ted i n  Fig. 4. 

Table 1. Maximum values of e f o r  each density r a t i o  

e max ( 1 o ) - 8  [ 3 1 1 4 3 . 2 7  42.66 39.39 32.72 25.40 19.79 17.15 13.40 9.864 7 .440  5.878 

Modified RGAS Subroutine 

The argument l i s t  of the ca l l i ng  sequence f o r  the modified RGAS 

subroutine i s  located i n  Appendix B. 

s e t t i n g  the c a l l i n g  argument NTEST equal t o  1, which s ignals  a tape read 

of the newly calculated cubic coeff ic ients .  NTEST equal t o  -1 and 0 are 

s t i l l  reserved fo r  the o r ig ina l  RGAS subroutine t o  make real gas and perfect  

gas calculat ions,  respectively.  For the known p, subroutine SERCH uses 

e t o  locate  the two sets of cubic coe f f i c i en t s  needed t o  ca l cu la t e  

An e,  p entry i s  accomplished by 

2 3 F = a  + b e + c e  + d e  1 1 1  1 1 

2 3 
F = a 2 + b e + c e  + d e  2 2 2 2 

(9) 
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trated in Fig. 5, a linear interpolation similar to Eq. (3) gives 

F = F1 + (F2 - Fl)(R - Rj) (10) 

Fig. 5 .  Calculation of F. 

With F known, p can be determined from Eq. (5). 

RGAS subroutine is then used to determine the other thermodynamic properties 

requested through the argument code NUMX. 

subroutine is given in Appendix C. 

The logic of the original 

A listing of the modified RGAS 

Estimates of the accuracy of the modified RGAS subroutine were 

obtained by entering with e and p data to determine p and subsequently 

h from 

h = e + p/p (11) 
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For comparison, h was also calculated from the original RGAS subroutine 

using the newly determined p and p from above. 

made of these two values of h. The numbers in the first line of Table 2 

are percentages of compared values with errors greater than the given 

value. 

by Lomax and Inouye' between the original RGAS subroutine and the data 

by Bailey . 
Table 2. 

1083 comparisons were 

The second line contains percentages of the 2624 comparisons made 

1 

Accuracy of Modified RGAS. 

Error 0.5% 1% 2% 3% 4% 5% 10% 

Modified RGAS 13.30 4.80 0.37 0.09 0 0 0 

Original RGAS 5.04 0.45 0 0 0 0 0 

SIMPLIFIED CURVE FITS FOR EQUILIBRIUM A I R  

Simplified curve fits for the thermodynamic properties of equilibrium 

air have been constructed for use in either the "time-dependent" or 

"shock-capturing" computational methods. 

correlations were develaped for p = p(e,p), a = a(e,p), and T = T(p,p) 

while for the "shock-capturing'' method a correlation was made for h = h(p,p: 

The ranges of validity for these correlation formulas are the same as the 

NASA RGAS subroutine, namely, temperatures up to 45,000 

from to 10 amagats. 

For the "time-dependent" method , 

0 K and densities 
3 

The simplified curve fits developed here allow the user to reduce 

computer time and storage while maintaining reasonable accuracy. 

be particularly true in the "time-dependent" method since the simplified 

Thfs may 
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curve fits could be used until near the end of a calculation when the 

steady-state solution is approached. Then, the modified RGAS subroutine 

could be used to give more accurate thermodynamic properties for the 

final steps. 

"shock-capturing" method since an iterative procedure involving h = h(p, p) 

is required for equilibrium calculations. 

Substantial savings in computer time may also result in the 

The curve fits for p = p(e,p) and h = h(p,p) were constructed using 
3 4 Grabau-type transistion functions 

and Barnwell . 
connect two surfaces f (x,y) and f (x,y). For y = constant, the Grabau-type 

transistion function (with an inflection point) becomes 

in a manner similar to Lewis and Burgess 

A transistion function of this type can be used to smoothly 5 

1 2 

where K is the parameter which determines the rate at which 

moves from fl(x) to f (x) and xo is the location of the inf 

as shown in Fig. 6 .  

2 

X X 
0 

the 

ect 

(12) 

curve 

on PO .nt 

Fig. 6. Grabau-type transistion with inflection point. 
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P- COMTAM 

UPPER CURVE 
(GRABAU-TYPE TRANSISTION FUNCTION) 

MIDDLE CURVE 
(GRABAU-TYPE TRANSISTION FUNCTION) 

LOWER CURVE (PERFECT GAS) 

For the present curve fits, two Grabau-type transistion functions 

were joined with the equation for a perfect gas as shown in Fig. 7. 

- 
.i! 

Fig. 7. Correlation curves for h = h(p, p). 

In addition, the range of the independent variable p was subdivided into 

three separate regions with different coefficients being used in the curve 

fits for each region (See Fig. 8.) The division lines are located at 

p/po = 5 x and p/po = 0 . 5 .  

The coefficients for f (x,y) and f (x,y) were determined using a 1 2 
least squares best fit computer program in conjunction with the original 

NASA RGAS subroutine. 

f (x,y) and f2(x,y) was largely a trial-and-error process. 

more terms, a better curve fit could be achieved. In fact, if a sufficient 

number of terms are retained in f (x,y) and f2(x,y), the accuracy of 1 
these curve fits can be made to approach that of the RGAS program but 

without any savings in computer time. 

The selection of the form of the equations for 

By including 1 
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0 
h/h f -5 3 

= 10” p/p, = 5 x 10 p/po = 5 x 10’’ P/Po = 10 

p/ Po 

Fig. 8. Division of curve f i t  range by density. 

For the co r re l a t ion  of p = p(e,p),  the r a t i o  7 = h/e was curve- 

f i t t e d  as a function of e and p so t h a t  p could be found from 

This equation i s  derived d i r e c t l y  from the de f in i t i on  of enthalpy. 

I, Barnwell has derived the following expression f o r  the speed of 

sound : 
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I n  the present study, i t  was found t h a t  a much b e t t e r  correlat ion fo r  

a = a(e ,p)  could be obtained from 

1/2 

a = [e 1.1 + (7 - 1) [;. (*)J + K3 (*p) .}I 
K2, and K were determined using the least 1’ 3 where the coe f f i c i en t s  K 

squares best  f i t  program i n  conjunction with the NASA RGAS program. The 

curve f i t  for T = T ( p , p )  uses a Grabau-type t r a n s i s t i o n  function without 

an i n f l e c t i o n  point f o r  the upper curve and a non-Grabau-type function 

fo r  the middle curve. 

4 

For the co r re l a t ion  of h = h(p, p), the r a t i o  ‘i; = h/e w a s  curve- 

f i t t e d  as a function of p and p so t h a t  h could be found f r m  

This equation was derived from the de f in i t i on  of enthalpy. 

The equations f o r  a l l  the present curve f i t s  appear i n  Appendix D. 

The ca l l i ng  sequence and l i s t i n g  of the subroutine TGAS t o  find p = p(e,p),  

a = a (e ,p ) ,  and T = T(p,p) and the subroutine TGAS t o  find h = h(p,p) 

appear i n  Appendix E and F, respectively.  

Comparisons of the r e l a t i v e  accuracy of the curve f i t s  f o r  p = p(e,p),  

a = a(e, p) and T = T(p, p) with the o r ig ina l  RGAS subroutine are shown i n  

Figs. 9, 10, and 11. Included on these graphs a re  the curve f i t s  by 

Barnwell . 5 I t  should be pointed out t h a t  the l i m i t s  of app l i cab i l i t y  of 
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Number of 
Curve F i t  Data Points TGAS 

P = P(e,p) 

a = a (e ,p>  508 1.434 sec 

T = T(p,p) 

-4 the Barnwell curve f i t s  fo r  p = p(e,p) and a = a(e,p) are 10 

and e/eo < 565. 

p/po S 20 and 

5 p/po S 10 

-2 The l i m i t s  of app l i cab i l i t y  fo r  T = T(p,p) are 6 x 10 

< p/po 5 lo-'. A comparison between the present curve 

f i t  f o r  h = h(p,p) and the o r ig ina l  RGAS subroutine i s  shown i n  Fig. 12. 

The deviations between the curve f i t s  f o r  p = p(e,p),  a = a (e ,p ) ,  T = T(p,p), 

and h = h(p,p);  and the o r ig ina l  RGAS subroutine are plot ted i n  Figs. 13, 

14, 15, and 16. 

procedure was used. F i r s t ,  e and p input data  was supplied which allowed 

TGAS t o  compute p = p(e,p).  Then, t h i s  p and the o r ig ina l  p w e r e  inputed 

i n t o  RGAS t o  give h and subsequently e from the d e f i n i t i o n  of enthalpy. 

This e was compared with the o r ig ina l  e t o  determine the accuracy of the 

curve f i t  f o r  p = p(e,  p). 

I n  order t o  make the comparison f o r  p = p(e,p) the following 

A comparison of the r e l a t i v e  computer times required f o r  the TGAS 

subroutines and the NASA RGAS programs a r e  given i n  Table 3. The TGAS 

subroutine f o r  finding p = p(e,p) ,  a = a (e ,p ) ,  and T = T(p,p) i s  approximately 

RGAS 

3.535 sec (0-1) includes tape read 

2.367 sec (2-508) 

5.902 sec 

h = h(P,P) 

2.434 sec (0-1) includes tape read 

46 4 1.035 sec 1.765 sec (2-464) 

4.199 sec 
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65% faster than the modified NASA RGAS subroutine. 

not include the time spent by the RGAS subroutine in reading the tape. 

The TGAS subroutine for finding h = h(p,p) is approximately 71% faster 

than the original RGAS program, again excluding the tape read time. If 

there are not more than a few hundred calls made to these real gas sub- 

routines, then the TGAS subroutines are substantially faster than the 

RGAS subroutines when the tape read time is included. 

there are 500 calls made to the subroutines to find p = p(e,p), a = a(e,p) 

and T = T(p,p), then TGAS is 317% faster than the modified RGAS subroutine. 

This comparison does 

For instance, if 

Comparisons of the values obtained using the curve fits at the 

juncture points A and B (See Fig. 7) are shown in Table 4 .  The maximum 

deviation between the curves at the juncture points for the primary 

variables p = p(e, p) and h = h(p, p) is 1.1%. 

Additional work is being conducted to improve the accuracy and 

computation times of the simplified curve fits developed in this study. 

In particular, it has been found that a substantial improvement in accuracy 

without much increase in computer time can be achieved if four instead of 

two Grabau-type transistion functions are joined with the equation for a 

perfect gas as in Fig. 7 .  
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Table 4. Comparison of var iab les  a t  juncture  points .  

Curve 
F i t  

P = p(e,P) 

Density 
Rat io  
P /Po 

Point A 

Lower Curve Middle Curve 
~ ~~ 

1.400 
1,400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 

1.399 
1.400 
1.401 
1.401 
1.403 
1.407 
1.408 
1.407 
1.407 
1.411 
1.410 

442.9 
442.9 
442.9 
442.9 
442.9 
442.9 
442.9 
442.9 
442.9 
442.9 
442.9 

438.3 
440.1 
440.9 
440.9 
442.3 
445.0 
446.1 
445.6 
447.0 
450.5 
450.6 

~~ 

1870.0 
1871.0 
1862.0 
1843.0 
1849.0 
1823.0 
1783.0 
1730.0 
1721.0 
1689.0 
1620.0 

1885.0 
1868.0 
1838.0 
1797.0 
1863.0 
1815.0 
1752.0 
1677 .O 
1718 .O 
1650.0 
1543.0 

1.400 
1,400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 

1.396 
1.396 
1.396 
1.395 
1.395 
1.396 
1.397 
1.399 
1.401 
1.404 
1.406 

Point B 

Middle Curve Upper Curve 

1.244 
1.228 
1.209 
1.189 
1.168 
1.160 
1.151 
1.139 
1.150 
1.151 
1.149 

1.243 
1.225 
1.207 
1.190 
1.172 
1.158 
1.143 
1.127 
1.163 
1.156 
1.149 

326.8 
313.7 
298.4 
281.1 
261.7 
256.0 
248.6 
239.4 
241.4 
244.9 
244.8 

324.7 
309.2 
293.6 
277.8 
261.7 
251.2 
239.6 
226.8 
251.5 
244.9 
238.1 

17039.0 
13772.0 
11450.0 
9727.0 
8503.0 
7615.0 
6815.0 
6030.0 
5435.0 
4965.0 
4723.0 

16 384.0 
13818.0 
11600.0 
9697.0 
8629.0 
7850.0 
7029.0 
6162.0 
5628.0 
5143.0 
4699.0 

1.267 
1.251 
1.234 
1.217 
1.191 
1.171 
1.150 
1.130 
1.116 
1.105 
1.093 

1.266 
1.251 
1.236 
1.218 
1.197 
1.183 
1.158 
1.130 
1.119 
1.105 
1.091 
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APPENDIX B 

CALLING SEQUENCE FOR MODIFIED RGAS 

The modified RGAS subrout ine i s  c a l l e d  by t h e  following s ta tement  

CALL RGAS(P, R, A ,  H, T ,  S ,  RR, G ,  NTEST, NUMX, NGAS, E) with 

2 
P = Pressure l b / f t  

R = Density,  s l u g s / f t  

A = Speed of sound, f t / s e c  

3 

2 2  H = Enthalpy, f t  / sec  

0 T = Temperature, R 

S = Entropy, f t  / sec  - R 
2 2 0  

2 2 0  
RR = Gas cons tan t ,  f t  / s ec  - R 

G = Rat io  of s p e c i f i c  h e a t s  

E = I n t e r n a l  energy i n  f t ,  /sec 2 2  

NTEST = - 1 e n t e r  with P ,R o r  P,S d a t a  f o r  r e a l  gas 

= 0 e n t e r  with P , R ,  o r  P ,S  d a t a  f o r  p e r f e c t  gas 

= 1 e n t e r  with E ,R  d a t a  f o r  r e a l  gas 

NlTMx = 1 Input = 
Output = 

= 2 Input  = 
Output = 

= 3 Input  = 
Output = 

= 4 Input  = 
output  = 

= 5 Input  = 
Output = 

NTEST = - 1 o r  0 

p, R,  RR, G 
A 

Same a s  NUMX = 1 
A ,  H 

Same a s  NUMX = I 
A ,  H,  T 

Same as NUMX = 1 
A, H,  T ,  S 

R, A,  H, T 
P,  S ,  RR, G 

NGAS = F i l e  number on permanent tape  which conta ins  des i r ed  gas.  
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SUBROUTINE R G A S ( P X , R X ~ A X I H X I T X T S X T R R X , G X I N T E S T T N U M X T N G A S , € X )  
D I M E h S I O N  N l L (  10) TJXX( LO) r D Z Z ( 1 O )  r T Z ( 3 0 O O )  ~ N D z ( 8 9 )  
DI MEhSION TH 1 5 t 6 C C )  9 NDL ( 4 9  11 1 (NDU ( 4 ~  11 1 9 AN( 4 )  T C  ( 7 )  9 ANR( 17)  T BN ( 4 )  
D I  YEhSICN T T Z ( ~ ~ ~ ) T ~ N C Z ~ ~ ~ ) ~ D H ( ~ T ~ ~ O ) , E X T ( ~ ~ , ~ )  
E Q U I V A L E N C E ( T Z , T h ) r ( N D Z r N D L ) ,  ( N D Z ( 4 5 )  tNDU), (TTZvDH)  
F I R S T  = 1.0 
DATA KEY r N T I M E S / C t O /  
DATA WORDl,WORD2/4HNUMHt4HNUML/ 
D A T A  N F I R S T / O /  
DATA NTAPE/9 /  
DATA MFIRST,MTIMES/OrO/ 

164 KE Y=KEY+l 
P=PX 
s = sx 
R= R X  
NUM=NUCX 
IF (hUM1 1,192 

2 IF(hL;M-51 3 T 3 1 4  
4 WORD=WORDl 
6 W R I l E I t t 5 )  WORD 
5 FORHAT(12HO ER I h  R G A S T ~ X ~ A ~ )  

2 5  CALL  E X I T  
1 WORD=WORDZ 

GO TO 6 
3 I F  (NTEST)  7 ~ 8 ~ 5 0 0  

500 E = EX 
IF(HFIRS1,GT.O) GO TO 5 3 1  
R E A C (  1 0 9 4 S 9 )  
FORMAT ( 6 E  16- 8 1 
RE A C  (101 5 0 1  

( E X T ( N R t 1 )  t N R = l r l l ) ,  (EXT (N392) , N R = l r  11) 9 6, E l ~ 0 , r l T H  I X  
499 

(hh iCZ(N1 T N = ~  t23) 
50 1 FO RM AT 1 6 I 8 1 

NkNM-NNDZ(23) 
REbC (10,502 ( TTZ ( N )  th=l thhMM)  

502 F O R H A T I 5 E 1 6 - 8 )  
END F I L E  10 
R E h I N D  10 
DO 5 0 3  N=1122 

503 N N D Z ( N ) = 5 * h K D Z l N )  
CONC = UTMIX /28 .566  

RO = ,0024S8*CONC 
PO = 2116. 

531 R = ALOGlO(R/RC)  
I F ( R )  5 1 2 ~ 5 1 2 ~ 5 1 3  

I F  ( N R + 7 ) 5 1 6 r 5 1 6 ~  515  
512 NR = R-1. 

516 NR = -7 

513  NR = R 

5 1 4  NR = 2 

GO TO 515 

I F  (NR-3) 5 1 5 t 5 1 4 r 5 1 4  

515 DX = R - F L C A T ( h R )  
NR = NR + 8 
I F ( E . L T . E X T ( N R T ~ ) )  GO TC 5 2 1  
I F ( E ~ G T ~ E X l ( N R ~ 2 ) )  GO TI1 5 1 9  

5 2 5  NL =NNDZ(NR) 

602 J = J X X ( 9 )  
I F ( Fc LL { 9 1-NL 1 60 1 9 602 T 6 C 1 

D I F F Z  = E - D h l 5 , J )  
I f  ( C I F F Z )  6C l ,bC8 ,608  

608 I F  (OZZd9  ) -ABS ( D I F F Z  1 )  6 C  1 9 6 0 1 9  6 0 3  
601 NU = N h D Z l h R + 1 1 )  
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CALL SERChl  E, Dh 9 hL ,NU* 5 9 J ,NER) 
I J = J / 5  

I J X X ( 9 ) = J  
D Z Z ( 9 1  = A B S ( D H ( S r J + l )  - D H ( 5 r J ) )  

N L L ( 9 )  = N L  
603 NL = F ;hDZ(NR+ l )  

606 K = J X X ( 1 C )  
I F ( h L L ( l O ) - N l )  6 C 5 7 6 0 6 r 6 0 5  

D I F F 2  = E - D b ( 5 r K )  
, I F  I D I F F 2 1  005,6CS,609 
I " 609 I F ( D Z Z ( L C I - A B S ( C I F F 2 ) )  6 0 5 r 6 0 5 r 6 0 7  

6 0 5  NU = NADZlNR + 12) 
CALL SERCk ( E, C b  9 h L 9 NU 5 r K  r NER I 
K = K / 5  

J X X ( 1 0 )  = K 
N L L ( 1 0 )  = NL 

D Z Z ( 1 0 )  = A B S ( D t 4 ( 5 r K + l )  - O H ( 5 r K ) I  

607  F 1  = D H I l r J )  + €*( ' IH(ZVJ) + E+(DH(3,J) + E * D H ( 4 , J ) ) )  
F2 = D H ( 1 . K )  + E* IDH(Z,K)  + E + ( D H ( 3 r K )  + E * O H I 4 r K ) ) )  
F = F 1  + D X + ( F Z - F l )  
PX= PO+lO.*+(F*( l .+E?*R +D*R+R) +R + B I  

P = PX 
R = R X  
MF I R S T  = 1 
GO TO 7 

5 2 1  I F  (E.LT.EXT(NR,l 1 I PX = RX+EX*.4 

5 1 9  MTICES = PTIMES + 1 
WR I T E l  t r  5 2 0 )  E 

W R I T E I 6 r 5 2 3 )  R X  
FORMAT ( 4 8  X 1 ' R= ' 9 E 16.8 I 
I F ( t ' T  I M E S - 1 0  1 

520 F O R M A T ~ l h O ~ ~ O X , ' C U T S I D E  TABLES I N  RGAS ENTERING W I T H  E= ' rE16.81  

52 3 
5 2 5 7  5 2  57 2 5 

7 I F  (hFIRST-NGAS)  l O r 9 v l . 0  
10 NF IRST=NGAS 

C C A L L  LCCATEINGAS rNTAPE) 
C 
C FGR TAPE k R I T T F N  B Y  FORTRAN 2 
c L 

c REAC (NTAPE)  I h C Z ( N )  r N = l r 8 9 )  
R E A C ( 9 r 2 0 1 )  W T M I X r ( C ( N )  r N = l r 7 )  

R E A C ( 9 9 2 0 0 )  ( N D Z ( N )  t l J = l r 8 S )  
200 F O R M A T  ( 1 6 1 8 )  

NMM=NDZ( 8 9 )  
C 
C R E A C  ( h T A P E )  ( T Z ( ~ ) r k = l r ~ M M ) r W T M I X r  ( C ( N )  r N = l r 7 )  

R E A D ( 9 , 2 0 1 )  ( T Z I h )  * N = l r h M P )  r X r X r X r X t X f X * X r X  
20 1 FO RM AT I8E 16.8 1 

GO T O  1 1 9 C  
1200 CGhT INUE 

R E k I N D  9 

120 ND 2 ( h  )=5+hCZ ( N )  
COhC= h T M I  X/2  8. S 6  6 

RO=. 0 0 2 4 9  E*CC k C  
RRR= 1716. /CONC 
RKX=RRR 
RTC=RRR*4S3.635 
SQPORO=SQRT (RO/PC) 
B=TZIhMY-2) 

1190 R E A C ( 9 r 2 0 1 r E k D = 1 2 0 3 )  X v X t X r X r X r X r X r X  

DO 120 N = l r 8 8  

P0=2116.  
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D=TZ(FIMMI 
FM=2.1632+ .3468+CONC 
AA=C*F M 
BB=E*FM+l .  
CC C= E!+ FM 

9 P = A L C G l O (  P/PO) 
E=TZ I hMM-11 
GO TO ( 4 0 r 4 0 r 4 0 r 4 0 r 3 1  r " t r 4 r 4 )  9 NUM 

3 1  REAL=S/RRR 
GG= (REAL-C( l ) - C (  i ) *P ) / (  C( 3) +P* (  C ( 4 )  + P * C  ( 5 )  1 1 

RL =P-8 
cc = c c c - P  
R H = - C C * ( l . + A A * C C / ( @ B ~ ~ B ) ) / B ~ + ~ 0 0 5  
I F  (RH+7.) 1 8 3 9 1 8 5 9 1 8 5  

1 1 0  R = C ( 6 ) * G G + C ( 7 ) * P  

1 8 3  RH=-7. 
1 8 5  I F  (R-RH) 1 8 0 r 1 8 1 r 1 8 1  
1 8 0  R=RH 
1 8 1  If ( 3 0 - R L )  1 8 4 r l e k 9 1 8 0  
1 8 4  R L = 3 0  
1 S b  I F I R L - R )  182,163,163 
1 8 2  R=RL 
1 6 3  NUMB=O 

hi1 M X = O  
3 5  hUMC=5 

NB C T z 9 - h U M  
hlUP=NBOT 
GO T O  4 2  

40 R=PLOGlO(R/RO) 
NUCN=5 
NBCT= 1 
htUP=hUtr: 

4 2  COhTINUE 
I F  ( R  1 

I F  I N R + 7 )  1 6 r  1 6 1  1 5  

1 2 r  1 2 r  13 
1 2  NR-R-1. 

16 NR=-7 

13 NR=R 

I+ NR=2 

GO TO 1 5  

I F  ( h R - 3 )  1 5 ~ 1 4 ~ 1 4  

1 5  DX=R-FLOAT (NR)  
NR=hR+ 8 
F =  (P-R-B) / ( 1.+R+ l E+D*R 1 1 
I F  (hUHM-9+NUM I 2 2 1 1 6 2 9  2 2  

1 6 2  I F  ( F - . C O O O O l )  2 7 ~ 1 6 1 ~ 1 6 1  
1 6 1  I F f F M - F )  4 4 9 . 2 2 ~ 2 2  
22 DO 1 7  R ~ = N B C T T N U P  

I F  (h l -NUMM) 3 6 . 8 1 ~ 3 6  
3 6  N E R l = N l  

NE RZ=N1+4 
NL=hDL ( N  1 9  NR 1 
I F  ( h L L ( N E R l ) - N L )  3 0 1 9 3 0 2 r 3 0 1  

302 J = J X J ( N E R l )  
01 F F Z = F - T H (  59 J 1 
I F  ( D I F F Z )  3 0 1  r 3 C 8 r 3 0 8  

308 I F  ( D Z Z ( N E R l ) - A B S  ( D I F F 2  1 )  3 0 1 ~ 3 0 1 ~ 3 0 3  
3 0 1  NU=hCU ( N l  TNR)  

CALL SERCH(F 1 THI hL 9 NU r 5  7 J 9 NER) 
J = J / 5  
D Z Z  (hrER1 )=ABS I T F  ( 5 ,  J + l  1-TH 15, J 1 ) 
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J X X ( N E R 1  )=J 
NLL ( h E R l  )=NL  

3 0 3  XYZ=XYZ 
NL=hCL ( N l r  NR+ 1) 
I F  ( h L L ( N E R 2 1 - h L )  3 0 5 ~ 3 3 6 r 3 0 5  

3 0 6  K = J X X ( N E R 2 )  
DI FF2=F-TP( 5 r K  1 
I F  (0 I F F 2  305 9 3 C 9 9 3 0 9  

3 0 9  IF ( O Z Z ( N E R Z ) - A B S ( D I F F 2 )  1 3 0 5 ~ 3 0 5 , 3 0 7  
30 5 NU= h DU ( N 1 v NR+ 1 J 

CALL S E R C H ( F , T ~ T ~ L ~ ~ U V ~  r K  rNER) 

DZZ(NERZ)=AGS ( T H ( 5 r K + l  ) - T H ( S , K )  1 
K = K / 5  

J X X ( N E R 2 ) - K  
NL L ( h E R 2  )=NL 

3 0 7  Y ~ = T H ( ~ ~ J ) + F ~ ( T ~ ( ~ ~ J ) + F * ( T H ( ~ T J ) + F * T H ( ~ ~ J ) ) )  
1 2 8  Y2=TI-(  l , K ) + F * ( T H ( 2 , K ) + F * ( T H ( 3 r K ) + F ~ T H ( 4 , K ) ) )  

AN I h 1 )-=Y 1 +OX*  (Y2-Y 1) 
GO T O  1 7  

8 1  A k ( h l ) = R E A L  
1 7  COhTINLE 

I F  (hliM-51 5 1 , 5 2 1 5 2  
5 1  GO T C  ( 1 2 1 , 1 2 2 9 1 2 3 r 1 2 4 r  l Z 4 r 1 2 4 r  1 2 4 r 1 2 4 )  ,NUM 

124 SX=AN( 4) *RRR 

12  2 HX =AN 2 1 * R T O  
1 2 1  AX=Ah(  1) /SQPORO 

GG T O  1 0 9  

1 0 8  RX=RC*lO.**R 
GO T C  5 1  

1 2 3  T X =  A N ( 3 1 4 1 . 8  

5 2  IF(hUMM-9+hUM) 3 9 ~ 1 0 8 ~ 3 9  

3 9  D I f F = A B S  ( ( R E A L - P h I N U P )  ) / R E A L )  

3 7  NUIUb9-NUM 
I f  ( D I F F - e C C O l )  5 7 9 3 7 9 3 E  

NBGT=l  
NUP=4 
GG T C  4 2  

3 8  hUPB=NUMB+l 
h1 NX=h I MX+ 1 
I F  ( h I M X - 2 0 )  4 3 , 4 3 9 4 4  

4 3  I F ( h L M B - 2 ) 8 2 , 8 3 , € 4  
8 2  I F ( R E A L - A N ( N U P ) )  €15937, €6  
8 5  R l = R  

1 4 1  S l = A N (  h U P l  
R = R + . 3  
I F  (RL-R)15C,S9.95 

1 5 0  R=RL 
99 R2=R 

1 5 1  L = C  
GO T O  4 2  

8 6  R2=R 
1 5 3  52=AN(l \ rUP) 

R=R-.3 
I F  (R-RH) 1 4 2 r 1 0 2 r  1 0 2  

1 4 2  R=RH 
1 0 2  R l = R  
1 4 3  L = l  

G O  TC 4 2  
8 3  I F ( L )  5 l r 9 C r 9 1  
90 S 2 = A N ( h U P )  

126 R=R2-( 52 -RE P L ) / (  S 2 - 5 1 )  * ( R 2 - R l )  
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I F  (RL-R) 187, 93 t  53 
187 R=RL 

GO TO 93 
9 1  S l=PN(NUP)  

127 R= ( REAL-S1 ) / (  S2-Sl ) * (R2-R1 ) + R 1  

188 R=Rh 

104 NUMB=L 

I F  (R-RH) 1 8 8 t 9 3 ~ 5 3  

93 I F 4 R 2 - R )  104t37 t105 

R 1  =R2 
s 1 = 5 2  
L= 0 
IF(R2+.3-RL) 2 1 0 1 2 1 1 r 2 1 1  

2 1 1  RZ=RL 
R= R2 
GO TO 42 

R=R2 
GO TO 42 

210 R2=R2+.3 

105 I F  (R-RL) 106t37.42 
106 NUMB=l  

R 2 = R l  
s2=s1 
L= 1 
I F  (AH-R1+.3) 212,213r213 

213 R l = R H  
R=R1 
GO TO 42 

R = R l  
GO TO 42 

212 R l z R 1 - 0 3  

8 4  IF (REAL-AN(NUP) )  8 7 . 8 7 ~ 8 8  
8 7  R l = R  

8 8  R2=R 
GO T O  91  

GO TO SO 

444 NT I C E  S=NT I MES+ 1 

190 F O R H A T ( 1 H 0 1 1 0 X 1 3 6 H O U T S I C E  TABLES IN RGAS ENTERING N I T H I  

44 I F ~ F - ~ O O O O O l ~  2 7 t 4 4 4 t 4 4 4  

WRITE(  6 r l S O )  

W R I T E ( 6 r l 9 1 1  PX 

IF(hUM-5) 1 9 2 t 1 9 3 t 1 9 3  
191 FORMAT ( l l X , 2 h P = ~ E 1 3 . 6 )  

192 WRITE(6 ,194)  K X  
1 94 FO RM  AT ( 1 1 X t 2 HR=E 14 0 6 1 

GO TC 196 
193 W R I T E ( 6 r 1 9 5 )  SX 
195 F O R M A T ( l l X t 2 H S = t E 1 3 . 6 )  
196 I F t N T I M E S - 1 0 )  l C S t 1 9 7 t l S 7  
197 WRITE (69 198)  
198 F O R M A T I 2 O X ~ 2 B h E X I T  CALLEC C N  TENTH F A I L U R E )  

GO TO 25 
8 L=O 

I F  (GTEST-GX) 64,441 964 
64 GTEST= GX 

L1=2 
A N R ( l ) = R R X  
ANR ( 2 )  =GX 
AN R ( 3  )=ANR (1  I /  (ANR( 2 1-1 1 
ANR (4 )=ANR I I I + m a  13 I 
ANR( 8)=49CC8.6GF-ANR ( 3 )  *ALOG( 17l.6/.0001 * *ANR(  2) 1 
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2 6 AN R ( L + 5  1 = 1. / A k R  ( L +2 I 

ANR ( L + 6 I  = ANR ( L + 4  I / ANR ( L +I I 
A h  K ( L + 7  )=  ANR ( L + 6  )/ANR ( L + 2  1 

441 GO TO (440~440r440r44U~C9r70~71~72)~NUM 
440 QUCC=P/R**bNR ( L + 2 )  

QUCT=P/R 

68 S = A h R I L + @ )  iANR ( L + 3 )  *BLOC( LUCID) 
67 T=CUCT/AhR ( L + 1 )  
66 H=CLCT*ANR(L+6) 
6 5  L L = L + L 1  

GO TO L65r 66 96716 E r 6 9 r  70 r 71  T 72 ) r NUM 

A = S C R T  ( A N R ( L L  I* ;CUOT) 
GO T C  30  

EX=EXP ( E X / A N R ( L + ? )  I 
R= (P/EX)**ANR [ L + 5 )  
QUOD=P/R**ANR I L + i )  
QUOT=?/R 
GO TC 67 

QUCD=P/R**AhR ( L + 2  I 
QUCT=P/R 
S=ANR(L+@)+PNR(L+3)*ALCG(CUODI 
GO T O  66 

71 A S S I G N  6 5  T C  NJUCP 
73 T=l- /ANRfL+41 

R=P/ (T*ANR ( L + l I  ) 
QUGD=P/R**ANR I L + Z  I 
QUOT=P/R 
S=Ah.R (1+8) +ANRIL  + 5 )  *ACOG( CUD0 1 

69  EX=S-ANR(L+8) 

7 0  R = P / (  T * A N R ( L + l )  1 

GO T C  N J U M P v I 6 5 r 3 a )  
7 2  ASSICN 30 TO NJUMP 

H= PAR ( L+7 1 *A**2 
GO TO 73 

30  AX=A 
HX =I- 
TX= T 
s x = s  
RX =R 

109 KETLRN 
2 7  L = @  

P= PX 
R=RX 
I F  (GTESTR-GXI 2 4 9 4 4 1 9 2 4  

2 4  GTESTR=GX 
L l = 9  
Z2=R0/10 . * *7  

PR=PC*lO.+*PR 
Z l = P R  

PR=-7. t B  

D O  2 1  h l = l r 4  
NL=hDL ( N 1  9 11 
h U = N C U ( N l r l )  
F=C. 
CALL 
J=J /5  

a N ( l ) = B N ( l ) / S & P O R G  
BN ( 2 ) =  BN ( 2 )+RTC 
BN ( 3  I =BN(3 ) *1 .8  
B N ( 4 ) = B N ( 4 ) * R R R  

SERCH (F 9 TH 9 hL *NU 9 5  9 J r NEK I 

2 1 BN ( h l  )=TH ( 1 9  J 1 
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A N R ( 9 ) = P R / ( Z 2  * @ N ( 3 ) )  
RR X=ANR ( S 1 
A N R f l Z ) = B N ( Z ) / B N  13) 
ANR (10 )=1 .+AhrR (9 / (ANR I 1 2  ) -ANR(9 )  1 
A N R ( l l ) = A N R ( 1 2 ) / A N R ( l O )  
ANR (17)=BNf 1) *RN(  1)  *Z2 /  Zl 
ANR ( 1 6 ) z B N  (4)-ANR ( 11) +ALOG( Z 1  / Z Z * * A N R  ( 10)  1 
LAST = 1 
GO T O  26 
EN C 

//GO.FT09FOOL C C  U N I T = T A P E 7 r V O L U M E = S E R = T Z l 4 ! 5 ~ D I S P - ( O L D , P A S S  1 9  X 

/ /GO .F T l G F O O l  C C  U N I T = T A P E 7 r V O L U M E = S E R = T Z  1459 01 SP=( NEW, KEEP) 9 X 
/ /  CCB= { DEh=l  t TRTCHzET ,RtCFM=U B L K S I Z E = 1 3 2 )  7 LABEL=( 2 ,NL 1 

/ /  C C B = ( D E h = l ~ T R T C H = E T ~ R E C F M = U ~ B L K S I Z E = 1 3 2 )  r L A B E L = ( 1 4 , N L )  
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APPENDIX D 

EQUATIONS FOR APPROXIMATE CURVE FITS 

p = p(e,D) 

For the correlation of p = p(e, p) , the ratio 7 = h/e was curve- 

fitted using the following equation: 

a + a6Y + a7Z + a8 (Y) (Z) 
N 5 
y = al + a Y + a3Z + a4(Y)(Z) + 1 + exp(ag + a Y + allZ) 2 (D1) 

10 

where Y = log (p/1.292) and Z = log (e/78408.4). The units of p are 

kg/m 

is found from 

2 " I  

10 10 
3 2 2  and the units of e are m /sec . Once 7 is determined, p(N/m ) 

P = pe(Y - 1) 

The coefficients al, a2 .... a are given in Table 5. 11 

a = a(e,o) 

The correlation for a = a(e,p) is given by Eq. (15). The coefficients 

K1, K2, and K are listed in Table 5. 3 

T = T ( p , p )  

The temperature is given by the following equations: 

T = p/(287 x p) Z 1.30 
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Y > -0.50 

-4.5 < Y J; -0.50 

-7 s Y s -4.5 

e ~ p r 2 . ( ~ 0  - Y)  - 3.41 
RO + 10. loglOT = bl + b2(Y - RO) + b3 

~~ ~ ~ 

-0.450363 -1.16372 -1.37558 0.000355 4.17976 0.083386 -0.673668 0.071504 

-0.022868 -1.03203 -1.02635 O.OOO441 4.17471 0.06272 -0.537628 -0.052594 

0.113084 -0.994532 -0.970778 0.001902 4.12619 0.05437 -0.551836 0.051818 

1.30 < Z < 2.6 2(Z) - 2.18 + b4 l R 0 l  

5 
(p/1.013 x 10 ) + 2.42 and where RO = log  10 

(Y - RO) . - exp[-50.25(Y ’ -  RO)] loglOT = c + c (RO) + c3(Y - RO) + c4 1 2  

(D5 1 

Z > 2.6 5 where RO = 0.941 loglo(p/1.013 x 10 ) - 1.97. 

The u n i t s  of  T a r e  K. 

are given i n  Table 6. 

0 The c o e f f i c i e n t s  b 1’ b2’ b3’ b4 and C1’ C2’ C3’ c4 

Table 6 .  Coe f f i c i en t s  f o r  curve f i t  T = T(p,p) .  

b2 b3 b4 =1 c2 c3 c4 
Denrity 

range 
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h = h(p,O) 

For the correlation h = h(p, p), the ratio = h/e was curve-fitted 

using the following equation: 

N 

y = dl + d2Y + d3X + d4(X)(Y) + 
d5 + d6Y + d7X + dg(X) (Y) 
1 + exp(dg + d 10 Y + dllX') 

5 where X' = log10(p/1.013 x 10 ) and X = X' - Y. 
2 2  m /sec . Once 7 is determined, h is found from 

The units for h are 

The coefficients dl, d2, .... dll are listed in Table 7. 
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APPENDIX E: 

SUBROUTINE TGAS FOR p = p(e,p), a = a(e,p), and T = T(p,p) 

The calling statement for this subroutine is 

CALL TGASIE, RHO, P ,  T, A) 

with 

2 2 E - Internal energy in m /sec 
3 RHO - Density in kg/m 

P - Pressure in newtons/m 
T - Temperature in K 

A - Speed of sound in m/sec 
0 

The following logic can be employed when the English system of units is 

used : 

E1 = E * 0.0929 
RHO1 = RHO * 515.4 
CALL TGAS (El, RHO1, PI, TI, Al) 

P = P1 * 0.02088 
T = T1 * 1.80 
A = A1 * 3.281 
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with 

2 2  E = Internal energy, f t  /sec 

3 RHO = Density, s lugs / f t  

2 P = Pressure, l b s / f t  

T = Temperature, R 

A = Speed of sound, f t l s e c  

0 

Listing of TGAS for p = p ( e , p > ,  a = a ( e , p > ,  and T = T(p,p) 



E-3 

S l J D H O U T I N i  T G A S (  t q < H I J f P  , T q A )  
YZ= b L C G l J ( ~ W i I / 1 . 2 9 2 )  

I F I Y 2  .GT. - e 5 0 1  GO TCI 14 
I F ( Y L  .GT.  - 4 . 5 0 )  S O  T(3 7 
I F ( Z Z . G T . . 6 5 0 ) G P  TO 1 
G A P C = 1 . 4 0 0  
S N C S C =  E 4 . 5 0 0  
GO T C  4 

Z Z  = A L C G l C j  ( E /  7 t 3 4 C  3.4) 

1 I F ( Z 2 - C T . 2 . 0 2 )  GC T J  L 
G a  s i= 1. j E 3s 7-. i c 4 9 i 4 7* Y z 
GA s z  = -. c 3 i / + s c  e + .  07  332  a S * Y L  
G A S 3 =  . 3 S C E 5 9 - , 2 5 7 3 4 4 * Y  2 
G A  S 4 =  -. 063 7 166-  .037 7 1  3 4* Y2 
GA S 5 =  . 0 C 4 9  19 7 + . C 7 332  8Si * Z 2 
G A S6= -2 5 7 9 4 4 - .  C l? 7 7  1 34* 2 2 
G A  S 7 =  E XP ( - 2  * 22 + . Ct 4* Y L +  3.40 1 
G A S e =  -2.0 
G A S S =  . 3 6 4  
G A S l Z =  . l l C ? % J  
G A S l 3 =  . 135562  
G A S 1 4 =  - . d O L 5 5 4 2 4  
GO T C  3 

2 G A S 1 =  l . ? E ~ Z 1 - . C C ~ Y 7 6 1 * ~ 2  
G A  S L =  .US 1 C S 7 6 - .  C3682OC*Y2 
GA S 3= . 3  L 2 i 59-. C L 5 4  5 4 3  * Y 2 
G A S 4 =  . 1 1 3 5 4 9 - . O C 3 7 6 6 7 * ’ ~ 2  
GAS5= .COGS761-.iC682dB*ZL 
G A S 6 =  , C O 5 4 3 4 9 - . C C 3 7 6 6 7 * Z 2  
G A S 7 =  E X P ( - 1 0 . 4 Z i + . 3 L O a Y 2 + 2 7 . O R )  
G A S 8 =  -1O.C  
G A S 4 =  . 3 2 C  
G A S l Z =  .342C7t 
G A S l 3 =  .023h52C 
G A S l 4 =  .iC7608 

3 G A S l C = l . / (  l . + G A S 7  1 
GA 51 l = ( G A S ? - G P S 4 * L 7  *GA S 7 + G f i S L O * + Z  
G A C ~ = G A S l - G A S 2 * Z Z - ( G A S ~ - G A S 4 ~ Z Z ) * G 4 S l ~  
G A  Y E=2.304* (-G P S 2 + ; P S4 * GA 5 1 O+GAS 1 1+GA S t3 1 

GACH=2.334*1-CAS5tGAS6*GASlO+GASll*GAS91 

S N C S G =  E * (  ( G A N P - 1 . )  ~ ( G A P Y + G A M F ) + G A M K + G A S l 4 )  

P= 

G A P E =  G A Y E * G A S 1 2  

G A M P =  G A M t ? * G A S l 3  

4 A= S C A T ( A E S ( S N C S G I  1 
R H C * F *  ( GAk iH-  1 e 0  1 

I F ( Z 2  . G T .  1 - 3 0 )  G13 T O  5 
T =  P/(2b7.*RHC) 
GO TC: 102 

R O =  ALCGlU(P/1,013F+05)+2.42 
5 I F ( Z 2  .GT. 2 - 6 1  C C  T O  6 

T =  . 1 1 3 0 8 4 - . S S 4 5 3 2 $ 1 Y Z - H 0 ) - . 9 7 0 7 7 ~ * (  l . / ( R 3 + l J . )  ) + E X P  12 . * (  ( K P - Y Z )  
1-3 - 4 0  1 1 + . C C 1 9 C 7 * ( A 13 S ( Rt‘ 1 1 ** ( 2. * Z 2- 2.1 8 

G O  T O  101 

I F  ( Y Z  . E C -  R C )  CG T O  1 C O  
T= 

G C  T C  101 

GAP’C=L .4CG 
SNDSC= E*.56C 

6 K O =  0 .  S 4 l * A L C C ;  10 ( P /  1 .O 1 ? E + O  5 ) -  1.973 

4 12 6 1 S + 0 5 4 3 7 2 *R 0- 5 5 18 3 6* ( Y 2 - R f l )  + . 0 5 1  Li 1 8* I Y2-RO 1 / ( 1.0- 
1 E X P ( - 5 C e 2 5 * ( Y 2 - P C ) ) )  

7 IF1ZZ.GT.-6501GO T O  8 
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GO T C  11 

GAS1= 2.1C6C6-.C525560*YL 
GAS2= -1 C C  142+. (333271 1 * Y 2  
GAS3= 5 . @ ? 2 C e - . 1 ? 2 1 3 4 * Y I  
GAS4= . 2 7 6 3 9 1 + . 0 C 4 3 6 2 3 * Y 2  
GA S 5= 
GAS6= . 1 3 2 1 3 4 +  . C C 4 3 6 2 3 * 2 2  

G A S B =  -1.C 
G A S $ =  .032  

GAS13= . 4 2 8 4 1 6  
G A S l 4 =  - .L)L605 
GO T C  1 0  

G A  S2= . 1 7 4 S 3 8 +  .O 3 5 4 1 4 1 * L 2  

GAS4= .166SS6+.Gi42433*YZ 
G A S S =  - ~ C 4 5 0 9 5 9 + . 0 3 5 4 1 4 1 * Z L  
G A  S6= -. 0 4 5 5 0  76+. 9 2 4 2 4 3  9* 2 2  
GA57= FXP(-10.~*Z2+.3L04Y2+77.~~~ 

8 I F ( Z i . G T o 2 . 3 1 G C  T O  9 

- 0 5  2 5 5 6 3 + .  C 3 d L  7 1 1 * 2 2 

G A S  7= FXP (-Z2+ . C 3 2 * Y 2 + 1  e 8 C )  

G A S l Z =  e 1 4 7 1 7 4  

9 GAS1= 1.5ES45+.CS5o95Y*LZ 

G A  S 3 =  *39C1$7+ .C455076*Y2 

GAS8= - 1 C o 0  
GAS9= , 3 2 0  
G A S l L =  .259574 
G A S 1 3 =  -. 1F257‘j  

1 0  L ; A S l C = l . / (  l . + G P S 7 )  
GAS14= o C 1 4 2 7 7  

GA S 1 1 =  ( G P  S3-GA 5 4  $ 2 2  
G A ~ C = G ~ S ~ - G A S L * Z S - ( G A S ~ - G A S ~ * Z ~ ) * G A S ~ #  
G A ~ E = L . 3 0 4 r ( - G A S i + S 6 S 4 * ~ A S l C + ~ ~ S ~ l * ~ A S ~ )  
G A M E= 
G A M P= 2.3 u 4 * ( - G A S 5 + C A S 6 * GA S 1 i) + G A S 1 1 * G 4 S 9 1 
G A C K =  C A * R * C A S l 3  

*LA C7 * G A S  1 U * * 2  

Gk PI E * G A S 1 L 

S N C S C =  F * (  ( S A I ” ” - l .  ) * ( G A F Y + G A M C )  +GAVK+GAS14) 
11 A= S G < T ( P ( B S ( S h C S G )  1 

P= R k L * F *  (GAPP-1.0) 
I F l Z L  .GT. 1.331 GO T U  11 
T= F/(2e7.*PHC) 
GU T C  1 0 2  

dU= ALCGlC ( P / 1  .d 13F+C)5 +2 - 4 7  
1 2  I F ( Z 2  . G T .  2 - 6 1  G C  Tn 13 

T z - 0  C2 7 PS 8-1 C 32  C 3 *  ( Y 2 - h C  ) -  1 - 3 2 6  35*  1 1 ( RO+ 10 1 1 *FX P ( 2  * ( K I ) - Y 2  1, 
1-3.401 ) + , C C O 4 4 1 * ( 4 1 3 S ( 9 0 )  * * ( 2 . * Z 2 - 2 . 1 6 )  

GO T @  101 

I F  LYZ .tG. P C )  C‘l ill 1 C O  
1 7  K O =  C. S 4 l * A L ( I G l d  ( P / 1 . 0 1 3 € + 3 5 ) - 1  .S70 

T= 

GU T C  1 0 1  

G A C I U = 1 . 4 C C  
SNCSG= F t C . 5 b D  
GO T C  1 6  

GA S 1 =  1.8 ? 79- 0 1 4  L35  9 * Y  2 
G A S Z =  -.532703+.C %+7996*YZ 
GAS3= 3 .  R 1752- - 0  57156h*Y2 

G A S 5;  , 3 1 4 L 4 5 5 + . C 3 4 79  9 6 * 2 2 
G A S O =  . ~ 5 7 1 5 6 C + . C ’ 1 ~ 5 1 7 ~ 3 Z 2  

4 .1747 1t. 3 C 2 7  ;c)*RO-, 5 3 7 6 2  3*  ( Y L - 9 0  ) - . # 5 2 5 9 4 *  ( Y2-!4(3 / ( 1.0- 
I t X P ( - S C . 2 5 * ( Y 2 - F f  I )  I 

14 IF(ZZ.CT..tSC)GC 1 : I  1 5  

1 5  IF(ZL.CT.2 .3)GT Tr 16 

G A  S4= - 2  745  23  t C 4 2 5 1  7 5 4  ’I 2 
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G A S 7 =  F X P ( - l . C ~ Z Z + . C 3 2 0 Y 2 + 1 . 9 4 3 )  
G A S B =  -1.0 
G A S S =  ,032 
G A S 1 2 =  .15d553 
G A S 1 3 =  . l a 9 6 5 2  

GO T C  17 
G A S 1 4 =  - ,CC33t?t?4 

l o  GA S 1 =  1,53746-, t 4 1 1 8 6 5 s Y 2  

G A S 3 =  . 3 0 5 5 7 4 + . t 4 8 8 3 7 4 + Y 2  
G A S 4 =  , 135442+ .  C 1 4 5 2 5 W k 2  
G A S S =  . 0 4 1 1 a 6 5 - . C 2 ~ 6 5 0 4 ~ 2 2  
G A S 6 =  - .24S6373+.01’ t525E*Z2 

G A S a =  -10.0 

G A S  12= .19 E 3 4  1 
G A S l 3 =  ,216819 
G A S 1 4 5  -.(?Cl6115 

GA S I I =  ( G A S 3 - G A S 4 * Z Z  1 *GA 5 7 * G A S 1 0 * * 2  
G A tJ M =  G A S  1-G A S  2 * Z 2 - ( G A S  3-  G A S  4 * 1 2 1 +G A 5 10 
GAY€=2.334t(-GAS3+GAS4*GASlC+GASll*GASU) 
G A M k =  G A N F * G P S 1 2  
G A M K = 2 , 3 0 4 + ( - ~ A S 5 + G , ~ S ~ ~ C A ~ l ~ + G A S l l ~ ~ A S 9 1  
G A P R =  C A M R * G b S 1 3  
SNOSC= E * (  ( G A Y M - 1 . )  * ( G A t ~ + G A M E ) + G A Y R + G A S l 4 1  

1 8  A= S C K T ( A P S ( S Y 3 S G ) )  
P =  R H C * E * ( G A M V - l . O )  
IF(Z2 . G T .  1 - 3 0 )  GO TC 19 
T= P/(237.*RHC) 
GO T C  102 

G A S 2 =  e 1 5 1  113-oO256 5O4*LZ 

I G A S 7 =  EXP( -10 ,O*L2+ .320~YZ+27 .C8)  

I G A S 9 =  .320 

I 
I 17 G A S 1 0 = 1 .  / I 1  . + G A S 7  1 

19 I F t Z 2  . G T .  2 . 6 )  C G  TO 2 0  
R O  = 
T=-. + ! ~ G 3 ( 5 3 - 1 . l b 3 7  24  ( Y Z - G C  1- 1.37558* ( 1. / ( RO+ 10 I ) *FXP ( 2  4 ( 

A L C G 1 S ( P / 1 0 1 3 E + 0 5 1 + 2 4 2 
K W Y 2  1 

1-3 .4 C J 1 + . C LO3 5 5 * ( A 9 S f R G  ) 1 ** f 2 * Z 2-2 1 8 1 
GI: T C  101 

If LY2 .EL. A C )  G C  TI0 100 
2 0  RO= 0. $4  1* :6LOG 10 ( P /  1.0 1 3 E +  3 5 )-l $70 

T= 4 , 1 7 ~ 7 6 + . C e 3 3 E h ~ R O - . 6 7 3 t C 8 * ( Y Z - R U ) + . 0 7 1 ~ O 4 ~ ( Y 2 - ~ ~ ~ ) /  (1.3- 
l E X P ( - ~ 0 . 2 5 ~ ( Y Z - ~ C ) ) )  

GO T C  101 

101 T= l C . * * T  
102 R E T L R i L  

EPIO 

130 T= 4 174+ ci63*Y2 



APPENDIX F 

SUBROUTINE TGAS FOR h = h(p, p) 

The calling statement f o r  this subroutine TGAS is 

CALL TGAS(P, RHO, H) 

with 

2 P = Pressure, newtons/m 

3 

2 2  

RHO = Density, kg/m 

H = Enthalpy, m /sec 

The following logic can be employed when the English system of units is used: 

P1 = P/0.02088 

RHO1 = RHO * 515.4 
CALL TGAS(P1, RHOl, HI) 

H = H1/0.0929 

with 
2 P - Pressure in lbs/ft 

RHO - Density in slugs/ft 
H - Enthalpy in ft /sec 

3 

2 2 

Listing of TGAS fo r  h = h(p,p) 
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SU BRCUTT h k  T G A S  ( P r RHG p H 1 
YZ= A L O G 1 0 ( R h 0 / l T 2 9 2 1  
X2= A L C G i O ( P / l . O 1 3 E + O 5 )  
z3=  X Z - Y Z  
IF f Y 2  .GJ. - 0 5 0 )  G!1 75 6 
I F  1 Y 2  .GT* - 4 o 5 C )  GO T C - 3  
I F I Z 3  .GT. , 2 5 0 )  Gn Tn 1 ~ 

H= ( P / R H C ) * 3 . 5 0  
R E  TLRN 

1 I F  ( 2 3  ,GT. 1 . 4 3 )  GG Trj 2 
GAS1= 1 .43168+.0C25b9O*Y2 
GA S i =  .a644 343+. C22Q381 *Y2 

GAS4= - , 1 5 1 7 5 t + . C l 8 7 6 6 5 * Y 2  
G A S S = E X P ( - l C , G * X ~ + i ~ . 3  l * Y 2 + 9 . 0  1 
GO TC 9 

G A S 3 = - 0 7 4 6 1 C ‘+ cj  1 4 8 2 9 7 * Y 2 

2 G A S l =  2 .c )4727+.115191*YL 

GAS3= 1 . 0 0 3 b 2 + , 1 1 4 3 5 b * Y 2  
G A S 4 = 6 7 i 4t 4 + . C 5 42 6 L $3 * L 2 

GU T C  9 

H= ( P / R H C ) * 3 . 5 0  
R F T L R N  

4 IF ( 2 3  .GT. 1 .4C)  i C J  T!l 5 
GAS1= 1.4dL.c8+.OC3bb lb*’Y2 

GA S3= -. C S 7 5 2 h -  - 0  1 2  1 1 5  5 * Y  2 
GAS4= - . 1 3 4 0 3 7 + . C 2 3 5 3 5 7 * Y 2  
GA S 5 = E  XP ( -  l O . O * X  2+ 13.3 1 t Y Z t 9 . 0  1 
GO TC 53 

5 G A  S 1= 1 2 6  137-  i; F *+646* Y2 
GA S2= .O 3 57 27 3-. Ct 1395‘; *Y2 
G A S 3 = .1 d 3 1 7+-. C & 7 46 b 3 * Y 2 
GAS4= .078411O- .C55S930*Y2 
G A S 5 = E X P ( - 1 3 . C ~ X i + I 1 . 3 s Y 2 + 1 7 . 0 )  
GO T C  9 

H= I P / R H C  )*3.5C 
R E  TLRN 

7 IF 1 2 3  . G T .  1.41)) GO T r  8 
GA S1= 1.4C 715+. 3 C 2 0 4 7 3 * Y 2  
GAS,?= . a 4 7 2 7 5  I+.  CCUR224*Y2 
GA S 3 =  - . 0 4  1 4 5 ’ i 5 + .  C32 5 8 5  4 w Z  
GAS4= - . l l F 5 € ! l + . L 4 3 4 R i 3 + Y Z  
GA S5=EXP ( -10 .0 *X2+  10.3 l * Y 2 + Y .  d )  
GO TC 9 

8 GAS1= 1 . 3 6 R 3 9 - . 4 C 3 L 9 2 4 * Y 2  
GA S2= . 1 0 3 4 5 9 -  .i: 1 2 4 4 8 1 s  ’YZ 
GAS3= . 1 4 1 6 ? 4 + . C 2 2 ~ 2 1 3 * ’ Y 2  
GA S4= .171 H S l + .  C C  E9432*’Y2 
GAS5=EXP ( - 1 ~ . 3 + X i + l l . ~ ~ L ~ + 1 7 . ~ )  

GA S 2 =  063 1 E C 1+ C S 13353:: Y2 

. G A  S ~ = E  XP ( - 5 .  n * x i  + 5 . 5 0 ~  z + a .  5 ) 

3 I F ( Z 3  .GT. .25O) G J  TC! 4 

GASZ= .C5  3 8 3 6 + . C ~ C 3 3 0 9 * Y 2  

6 I F I Z 3  , G T .  . 2 5 0 )  G i )  T P  7 

9 G A C C = 2 A S l - G A S Z ~ L 3 - ( G A S ~ - G ~ S 4 ~ ~ 3  I / (  l . + G A S 5 )  
10 H= ( P / K H n ) ~ ( G A X Y / I G A M ~ ~ - l .  1 )  

RE TLRiJ 
E N D  

NASA-Langley, 1972 - 12 


